Check for updates

Blood 142 (2023) 3048-3049

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

623.MANTLE CELL, FOLLICULAR, AND OTHER INDOLENT B CELL LYMPHOMAS: CLINICAL AND EPIDEMIOLOGICAL

Development and Validation of a Machine-Learning Model to Predict POD24 Risk of Follicular Lymphoma

Jie Zha^{1,2}, Qinwei Chen^{3,2}, Wei Zhang⁴, Hongmei Jing, MD⁵, Jingjing Ye⁶, Haifeng Yu^{7,8}, Shuhua Yi⁹, Caixia Li¹⁰, Zhong Zheng¹¹, Wei Xu¹², Zhifeng Li¹³, Lingyan Ping¹⁴, Xiaohua He^{15,16,17}, Liling Zhang¹⁸, Ying Xie¹⁹, Feili Chen²⁰, Xiuhua Sun²¹, Liping Su²², Huilai Zhang, MD²³, Zhijuan Lin^{3,24}, Haiyan Yang²⁵, Weili Zhao²⁶, Lugui Qiu⁹, Zhiming Li^{27,17,16}, Yuqin Song, MD²⁸, Bing Xu^{2,3}

¹Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, xiamen, China

²Key laboratory of Xiamen for diagnosis and treatment of hematological malignancy, Xiamen, China

³Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China

⁴Department of Hematology, Peking Union Medical College Hospital, Beijing, China, Beijing, China

⁵Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China

⁶Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China

⁷ Department of Lymphoma, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China

⁸Department of Lymphoma, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China

⁹ State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology& Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China

¹⁰National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China

¹¹ Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, shanghai, China ¹² Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China

¹³Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, Xiamen, China

¹⁴Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute (Beijing Cancer Hospital), Beijing, China

¹⁵Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China

¹⁶ State Key Laboratory of Oncology in South China, Guangzhou, China

¹⁷ Collaborative Innovation Center for Cancer Medicine, Guangzhou, China

¹⁸ Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
¹⁹ Shengli Clinical Medical College of Fujian Medical University, Department of Hematology, Fujian Provincial Hospital,

Fujian Medical University, Fuzhou, China

²⁰Lymphoma division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China

²¹ The Second Hospital of Dalian Medical University, Dalian, China

²² Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical

Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China

²³Department of Lymphoma, Tianjin Medical University Cancer Hospital, Tianjin, China

²⁴Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, Xiamen, China

POSTER ABSTRACTS

²⁵Zhejiang Cancer Hospital, Hangzhou, China

²⁶ Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China ²⁷ Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China

²⁸ Department of Lymphoma, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, BEIJING, China

Background: Disease progression or relapse within 24 months after starting treatment (POD24) has been considered as an independent unfavorable factor in follicular lymphoma (FL). This study was to explore the discriminative accuracy of a machine learning-based (ML) model within different ethnic groups for identifying FL1-3a patients at higher risk for POD24.

Methods: 1938 FL1-3a patients were enrolled from a Chinese multicenter cohort and randomly subdivided into a training cohort and an internal validation cohort. An external validation cohort included 1145 patients from the GALLIUM Study within different ethnicity. Univariable regression analysis with backward selection for inclusion of predictor variables and nonlinear analysis based on the XGBoost algorithm were used to develop a ML model for predicting POD24. For internal and external validation, the time-dependent area under the receiver operating characteristic curve (AUROC) was used to investigate the model's predictive performance, compared with established traditional models such as Follicular Lymphoma International Prognostic Index (FLIPI), FLIPI-2 and PRIMA-PI. The calibration and clinical usefulness of the ML model were evaluated using calibration plots and decision curve analyses, respectively.

Results: During the follow-up period, 383 (19.7%) and 405 (36.3%) of patients who experienced POD24 were identified in the Chinese cohort and the GALLIUM Study, respectively. In the training cohort, important features of POD24 based on the XGBoost algorithm were ranked by SHAP analysis. Increased lymphocyte-to-monocyte ratio (LMR>10) ranked first (scoring 2), followed by elevated lactate dehydrogenase (LDH), hemogolobin reduction (HGB<12g/dl), elevated beta-2 microglobulin (B2-MG), higher maximum standardized uptake value (SUVmax>10), and 4 or more involved lymph nodes (each scoring 1) were incorporated into the new ML model, referred to as FLIPI-C. The new model performed well in predicting PFS as well as OS, and stratified patients into low- (0-3) and high-risk groups (4-7). In internal validation, FLIPI-C demonstrated a higher AUROC of 0.764 (95%CI: 0.721-0.806) for POD24 prediction compared with 0.648 (95%CI: 0.599-0.696) of FLIPI, 0.706 (95%CI: 0.658-0.754) of FLIPI-2 and 0.716 (95%CI: 0.669-0.763) of PRIMA-PI. In external validation with GALLIUM Study, FLIPI-C demonstrated a higher AUROC of 0.701 (95%CI: 0.659-0.741) for POD24 prediction compared with 0.578 (95%CI: 0.531-0.625) of FLIPI, 0.600 (95%CI: 0.554-0.645) of FLIPI-2 and 0.593 (95%CI: 0.547-0.639) of PRIMA-PI. In addition, the FLIPI-C model had adequate calibration with similar predicted and observed risk of POD24. In decision curve analysis, FLIPI-C yielded improved net benefits compared with FLIPI, FLIPI-2 and PRIMA-PI.

Conclusions: TheFLIPI-C model generated using a machine learning approach exhibited greater discriminative accuracy than prior established traditional models for predicting POD24 and is valuable for treatment selection and prognostic assessment of FL.

Disclosures No relevant conflicts of interest to declare.

https://doi.org/10.1182/blood-2023-182812